UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE MEDICINA

Yasmim Carvalho Telson

APLICAÇÃO DA TERMOGRAFIA INFRAVERMELHA NA AVALIAÇÃO DO MODO RESPIRATÓRIO: UM ESTUDO PILOTO

Yasmim Carvalho Telson

APLICAÇÃO DA TERMOGRAFIA INFRAVERMELHA NA AVALIAÇÃO DO MODO RESPIRATÓRIO: UM ESTUDO PILOTO

Trabalho apresentado à banca examinadora para conclusão do curso de Fonoaudiologia da Faculdade de Medicina da Universidade Federal de Minas Gerais.

Orientadora: Profa. Dra. Andréa Rodrigues

Motta

Coorientadora: Profa. Dra. Renata Maria

Moreira Moraes Furlan

Belo Horizonte 2019

APLICAÇÃO DA TERMOGRAFIA INFRAVERMELHA NA AVALIAÇÃO DO MODO RESPIRATÓRIO: UM ESTUDO PILOTO

APPLICATION OF INFRARED THERMOGRAPHY IN RESPIRATORY MODE ASSESSMENT: PILOT STUDY

Yasmim Carvalho Telson¹, Renata Maria Moreira Moraes Furlan², Matheus Pereira Porto³, Rafael Augusto Magalhães Ferreira³, Andréa Rodrigues Motta²

- (1) Graduanda em Fonoaudiologia, Universidade Federal de Minas Gerais UFMG Belo Horizonte (MG), Brasil.
- (2) Departamento de Fonoaudiologia, Universidade Federal de Minas Gerais UFMG Belo Horizonte (MG), Brasil.
- (3) Departamento de Engenharia Mecânica, Universidade Federal de Minas Gerais– Belo Horizonte (MG), Brasil.

Trabalho realizado no Departamento de Fonoaudiologia da Universidade Federal de Minas Gerais, Minas Gerais (MG), Brasil.

Endereço para correspondência:

Andréa Rodrigues Motta

Faculdade de Medicina da UFMG - Av. Professor Alfredo Balena, 190 sala 251-Santa Efigênia – BH – MG – 30130-100.

andreamotta19@gmail.com

Conflito de interesses: Os autores não têm conflitos de interesse.

Resumo expandido

Introdução: O modo respiratório é um importante fator de influência no equilíbrio das estruturas e demais funções orofaciais. Na avaliação fonoaudiológica não há um equipamento "padrão ouro" para a análise do modo respiratório. A termografia infravermelha consiste em um método sem contato que avalia um campo de temperaturas em uma determinada cena. Estudos promissores têm utilizado essa técnica para análise da respiração. Objetivo: apresentar um novo método de análise do modo respiratório por meio da termografia, investigando a aplicabilidade da ferramenta na prática clínica fonoaudiológica. Métodos: estudo transversal exploratório, realizado no Laboratório de Termometria da Faculdade de Engenharia da UFMG (Lab Term). A câmera termográfica Flir SC660 e a lente Flir (38 mm) de 24 graus foram utilizadas para a coleta dos dados. A temperatura da sala foi controlada em torno de 20 a 22°C. Utilizou-se um ângulo padrão de aproximadamente 30° e uma distância de aproximadamente um metro entre a câmera e a face. Foram registradas sequências de imagens termográficas (cinco frames por segundo) de quatro voluntárias do sexo feminino respiradores nasais sem queixas respiratórias. Em um primeiro momento, foram realizadas filmagens com a voluntária respirando de forma habitual, sem nenhuma orientação quanto ao modo respiratório, em seguida as filmagens foram realizadas durante a simulação da respiração oral. Para compor a amostra foram selecionadas 40 imagens térmicas que representavam a inspiração. Para análise quantitativa e qualitativa das sequências de imagens obtidas utilizou-se o software FLIR Tools[®]. Para a extração das temperaturas das regiões de interesse (nariz e boca) foram utilizadas duas formas de seleção distintas (linha e quadrado). A comparação inter e intra-avaliador foi realizada por meio do teste Wilcoxon pareado, assim como a análise comparativa das respostas obtidas pelas medidas da linha e do quadrado. As análises comparativas entre o modo respiratório nasal e modo respiratório oral foram realizadas por meio do teste Mann-Whitney. Já as análises de correlações foram realizadas por meio do coeficiente de correlação de Spearman. O nível de significância adotado foi de 5%. **Resultados:** na análise comparativa das avaliações intra e interavaliadores. não foram observadas diferenças estati

significantes, revelando uma boa repetitividade e reprodutibilidade dos resultados. Na comparação das imagens das temperaturas usando duas formas distintas de seleção (linha horizontal e quadrado) observou-se diferença com relevância estatística entre as avaliações. Já na comparação das medidas de temperatura das narinas entre a respiração oral e nasal não foram encontradas diferenças com relevâncias estatísticas. **Conclusão:** O método proposto se mostrou promissor para análise do modo respiratório por meio da termografia infravermelha, podendo ser incorporado na clínica fonoaudiológica como instrumento diagnóstico.

Referências Bibliográficas

- Costa M, Valentim AF, Becker HMG, Motta AR. Achados da avaliação multiprofissional de crianças respiradoras orais. Rev CEFAC. 2015;17(3):864-78.
- Melo DL, Santos RVM, Perilo TVC, Becker HMG, Motta AR. Avaliação do respirador oral: uso do espelho de Glatzel e do peak nasal inspiratory flow. CoDAS. 2013;25(3):236-41.
- 3. Chrzanowski K. Testing thermal imagers. Practical guide. Warsaw: Military University of Technology; 2010. p. 18-27.
- 4. Côrte ACRE, Hernandez AJ. Termografia médica infravermelha aplicada à medicina do esporte. Rev Bras Med Esporte. 2016;22(4):315-9.
- 5. Sanches IJ, Gamba HR, de Souza MA, Neves EB, Nohama P. Fusão 3D de imagens de MRI/CT e termografia. Rev Bras Eng Biomed. 2013;29(3):298–308.
- Novo MMM, Bitencourt CS, Tiba PRT, Silva DGM, Pandolfelli VC, Carlos S. Fundamentos básicos de emissividade e sua correlação com os materiais refratários, conservação de energia e sustentabilidade. Cerâmica. 2014;60:22–33.
- 7. Hu M-H, Zhai G-T, Li D, Fan Y-Z, Chen X-H, Yang X-K. Synergetic use of thermal and visible imaging techniques for contactless and unobtrusive breathing measurement. J Biomed Opt. 2017;22(3):36006.
- 8. Kastl KG, Wiesmiller KM, Lindemann J. Dynamic infrared thermography of the nasal vestibules: a new method. Rhinology. 2009;47(1):89-92.
- 9. Vermeulen S, Barreto M, La Penna F, Prete A, Martella S, Biagiarelli F, et al. Exhaled breath temperature in children: reproducibility and influencing factors. J Asthma. 2014;51(7):743-50.
- 10. Hers V, Corbugy D, Joslet I, Hermant P, Demarteau J, Delhougne B, et al. New concept using Passive Infrared (PIR) technology for a contactless detection of breathing movement: A pilot study involving a cohort of 169 adult patients. J Clin Monit Comput. 2013;27(5):521–9.
- 11. Fei J, Pavlidis I, Murthy J. Thermal vision for sleep apnea monitoring. In: Yang GZ, Hawkes D, Rueckert D, Noble A, Taylor C.. In Anais do Medical

- image computing and computer-assisted intervention; 2009. nov 11, Berlin, Alemanha: Springer 2009. p 1084-91.
- 12.Lindemann J, Wiesmiller K, Keck T, Kastl K. Dynamic nasal infrared thermography in patients with nasal septal perforations. Am J Rhinol Allergy. 2009;23(5):471–4.
- 13. Goldman LJ. Nasal airflow and thoracoabdominal motion in children using infrared thermographic video processing. Pediatr Pulmonol. 2012;47(5):476-86.
- 14. Klaessens JHGM, van den Born M, van der Veen A, Sikkens-van de Kraats J, van den Dungen FAM, Verdaasdonk RM. Development of a baby friendly non-contact method for measuring vital signs: first results of clinical measurements in an open incubator at a neonatal intensive care unit. Proceedings of Advanced Biomedical and Clinical Diagnostic Systems XII; 2014; San Francisco, California, United States: SPIE BiOS; 2014. 89351P.
- 15. Pereira CB, Heimann K, Venema B, Blazek V, Czaplik M, Leonhardt S. Estimation of respiratory rate from thermal videos of preterm infants. Proceedings of IEEE Eng Med Biol Soc. 2017:3818-21.
- 16. Procházka A, Charvátová H, Vyšata O, Kopal J, Chambers J. Breathing analysis using thermal and depth imaging camera video records. Sensors (Basel). 2017;17(6). pii: E1408.
- 17. Pereira CB, Yu X, Czaplik M, Blazek V, Venema B, Leonhardt S. Estimation of breathing rate in thermal imaging videos: a pilot study on healthy human subjects. J Clin Monit Comput. 2017;31(6):1241-54.
- 18. Hu MH, Zhai GT, Li D, Fan YZ, Chen XH, Yang XK. Synergetic use of thermal and visible imaging techniques for contactless and unobtrusive breathing measurement. J Biomed Opt. 2017;22(3):36006.
- 19. American Academy of Thermology, AAT. Guidelines for dental-oral and systemic health infrared thermography. Pan American J Med. Thermol. 2015; 2(1):44-53.
- 20. Steketee J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 1973; 686–94.
- 21. Miot HA. Análise de concordância em estudos clínicos e experimentais. Jornal vascular brasileiro. 2016;15(2):89–92.

22. Rodrigues-Bigaton D, Dibai-Filho A, Packer A, Costa A. Accuracy of two forms of infrared image analysis of the masticatory muscles in the diagnosis of myogenous temporomandibular disorder. J Bodyw Mov Ther. 2014;18:49-55